The Mathematical Sciences Colloquium invites speakers from all areas of mathematics and are open to all members of the RPI community.
A static quantum embedding scheme based on coupled cluster theory
We develop a static quantum embedding scheme that utilizes different levels of approximations to coupled cluster (CC) theory for an active fragment region and its environment. In this approach, we solve the local fragment problem using a high-level CC method and address the environment problem with a lower-level Møller–Plesset (MP) perturbative method combined with an efficient relaxation mechanism. We define a static renormalized interaction for the fragment problem with the quantities obtained from the low-level method.
Structured Matrix Approximation from Matrix-Vector Products
I will discuss the problem of approximating a target matrix A with a structured matrix, given access to a limited number of adaptively chosen matrix-vector products with A. This general problem arises across computational science, both in algorithmic applications and, more recently, in Scientific Machine Learning (SciML), where it abstracts the central task of operator learning.
Wave Turbulence: Why and when it works and open challenges
Wave turbulence, the longtime statistical behavior of a sea of weakly nonlinear dispersive waves, unlike the case of hydrodynamic turbulence, has, in many circumstances, a natural asymptotic closure. The closure gives a closed (kinetic) equation for the energy (or number) density clearly revealing the resonance mechanism by which waves of one wavelength and direction transfer energy to others throughout the spectrum. Equations for the higher order cumulants are all linear and satisfied by a frequency renormalization.
Direct interpolative construction of quantized tensor trains
Quantized tensor trains (QTTs) have recently emerged as a framework for the numerical discretization of continuous functions, with the potential for widespread applications in numerical analysis, including rank-structured solvers and preconditioners based on "quantum-inspired" algorithms such as DMRG. However, the theory of QTT approximation is not fully understood.
Static currents in type-I superconductors
In this talk, we describe the classical magneto-static approach to the theory of type-I superconductors. (See the complete abstract on the event flyer)
Simulation of molecules and materials from the first-principles of quantum mechanics
In a seminal article in 1929, P.A.M. Dirac wrote: "The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation."